Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 170 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Principles of Statistical Inference in Online Problems (2209.05399v2)

Published 12 Sep 2022 in stat.ME, math.ST, stat.CO, and stat.TH

Abstract: To investigate a dilemma of statistical and computational efficiency faced by long-run variance estimators, we propose a decomposition of kernel weights in a quadratic form and some online inference principles. These proposals allow us to characterize efficient online long-run variance estimators. Our asymptotic theory and simulations show that this principle-driven approach leads to online estimators with a uniformly lower mean squared error than all existing works. We also discuss practical enhancements such as mini-batch and automatic updates to handle fast streaming data and optimal parameters tuning. Beyond variance estimation, we consider the proposals in the context of online quantile regression, online change point detection, Markov chain Monte Carlo convergence diagnosis, and stochastic approximation. Substantial improvements in computational cost and finite-sample statistical properties are observed when we apply our principle-driven variance estimator to original and modified inference procedures.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.