Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 75 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 104 tok/s Pro
Kimi K2 170 tok/s Pro
GPT OSS 120B 468 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Automated MIMO Motion Feedforward Control: Efficient Learning through Data-Driven Gradients via Adjoint Experiments and Stochastic Approximation (2209.05139v1)

Published 12 Sep 2022 in eess.SY and cs.SY

Abstract: Parameterized feedforward control is at the basis of many successful control applications with varying references. The aim of this paper is to develop an efficient data-driven approach to learn the feedforward parameters for MIMO systems. To this end, a cost criterion is minimized using a stochastic gradient descent algorithm, in which both the search direction and step size are determined through system experiments. In particular, the search direction is chosen as an unbiased estimate of the gradient which is obtained from a single experiment, regardless of the size of the MIMO system. The approach is illustrated using a simulation example, in which it is shown to be superior to a deterministic method in terms of convergence speed and thus experimental cost.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.