Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Trainable Projected Gradient Detector for Massive Overloaded MIMO Channels: Data-driven Tuning Approach (1812.10044v2)

Published 25 Dec 2018 in cs.IT, cs.LG, and math.IT

Abstract: This paper presents a deep learning-aided iterative detection algorithm for massive overloaded multiple-input multiple-output (MIMO) systems where the number of transmit antennas $n$ is larger than that of receive antennas $m$. Since the proposed algorithm is based on the projected gradient descent method with trainable parameters, it is named the trainable projected gradient-detector (TPG-detector). The trainable internal parameters, such as the step-size parameter, can be optimized with standard deep learning techniques, i.e., the back propagation and stochastic gradient descent algorithms. This approach is referred to as data-driven tuning, and ensures fast convergence during parameter estimation in the proposed scheme. The TPG-detector mainly consists of matrix-vector product operations whose computational cost is proportional to $m n$ for each iteration. In addition, the number of trainable parameters in the TPG-detector is independent of the number of antennas. These features of the TPG-detector result in a fast and stable training process and reasonable scalability for large systems. Numerical simulations show that the proposed detector achieves a comparable detection performance to those of existing algorithms for massive overloaded MIMO channels, e.g., the state-of-the-art IW-SOAV detector, with a lower computation cost.

Citations (61)

Summary

We haven't generated a summary for this paper yet.