Communication-efficient Quantum Algorithm for Distributed Machine Learning (2209.04888v1)
Abstract: The growing demands of remote detection and increasing amount of training data make distributed machine learning under communication constraints a critical issue. This work provides a communication-efficient quantum algorithm that tackles two traditional machine learning problems, the least-square fitting and softmax regression problem, in the scenario where the data set is distributed across two parties. Our quantum algorithm finds the model parameters with a communication complexity of $O(\frac{\log_2(N)}{\epsilon})$, where $N$ is the number of data points and $\epsilon$ is the bound on parameter errors. Compared to classical algorithms and other quantum algorithms that achieve the same output task, our algorithm provides a communication advantage in the scaling with the data volume. The building block of our algorithm, the quantum-accelerated estimation of distributed inner product and Hamming distance, could be further applied to various tasks in distributed machine learning to accelerate communication.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.