Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 164 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Towards Weak Source Coding (2209.04765v1)

Published 11 Sep 2022 in cs.IT and math.IT

Abstract: In this paper, the authors provide a weak decoding version of the traditional source coding theorem of Claude Shannon. The central bound that is obtained is [ \chi>\log_{\epsilon}(2{-n(H(X)+\epsilon)}) ] where [ \chi=\frac{\log(k)}{n(H(X)+\epsilon)} ] and $k$ is the number of unsupervised learning classes formed out of the non-typical source sequences. The bound leads to the conclusion that if the number of classes is high enough, the reliability function might possibly be improved. The specific regime in which this improvement might be allowable is the one in which the atypical-sequence clusters are small in size and sparsely placed; similar regimes might also show an improvement.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube