Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 28 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 13 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 471 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

On Unique Decodability (0809.1043v1)

Published 5 Sep 2008 in cs.IT and math.IT

Abstract: In this paper we propose a revisitation of the topic of unique decodability and of some fundamental theorems of lossless coding. It is widely believed that, for any discrete source X, every "uniquely decodable" block code satisfies E[l(X_1 X_2 ... X_n)]>= H(X_1,X_2,...,X_n), where X_1, X_2,...,X_n are the first n symbols of the source, E[l(X_1 X_2 ... X_n)] is the expected length of the code for those symbols and H(X_1,X_2,...,X_n) is their joint entropy. We show that, for certain sources with memory, the above inequality only holds when a limiting definition of "uniquely decodable code" is considered. In particular, the above inequality is usually assumed to hold for any "practical code" due to a debatable application of McMillan's theorem to sources with memory. We thus propose a clarification of the topic, also providing an extended version of McMillan's theorem to be used for Markovian sources.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.