Double square moments and bounds for resonance sums of cusp forms (2209.03856v1)
Abstract: Let $f$ and $g$ be holomorphic cusp forms for the modular group $SL_2(\mathbb Z)$ of weight $k_1$ and $k_2$ with Fourier coefficients $\lambda_f(n)$ and $\lambda_g(n)$, respectively. For real $\alpha\neq0$ and $0<\beta\leq1$, consider a smooth resonance sum $S_X(f,g;\alpha,\beta)$ of $\lambda_f(n)\lambda_g(n)$ against $e(\alpha n\beta)$ over $X\leq n\leq2X$. Double square moments of $S_X(f,g;\alpha,\beta)$ over both $f$ and $g$ are nontrivially bounded when their weights $k_1$ and $k_2$ tend to infinity together. By allowing both $f$ and $g$ to move, these double moments are indeed square moments associated with automorphic forms for $GL(4)$. By taking out a small exceptional set of $f$ and $g$, bounds for individual $S_X(f,g;\alpha,\beta)$ will then be proved. These individual bounds break the resonance barrier of $X\frac58$ for $\frac16<\beta<1$ and achieve a square-root cancellation for $\frac13<\beta<1$ for almost all $f$ and $g$ as an evidence for Hypothesis S for cusp forms over integers. The methods used in this study include Petersson's formula, Poisson's summation formula, and stationary phase integrals.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.