Papers
Topics
Authors
Recent
2000 character limit reached

Bayes factors for longitudinal model assessment via power posteriors (2209.03847v1)

Published 8 Sep 2022 in stat.ME

Abstract: Bayes factor, defined as the ratio of the marginal likelihood functions of two competing models, is the natural Bayesian procedure for model selection. Marginal likelihoods are usually computationally demanding and complex. This scenario is particularly cumbersome in linear mixed models (LMMs) because marginal likelihood functions involve integrals of large dimensions determined by the number of parameters and the number of random effects, which in turn increase with the number of individuals in the sample. The power posterior is an attractive proposal in the context of the Markov chain Monte Carlo algorithms that allows expressing marginal likelihoods as one-dimensional integrals over the unit range. This paper explores the use of power posteriors in LMMs and discusses their behaviour through two simulation studies and a real data set on European sardine landings in the Mediterranean Sea.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.