Seeking Interpretability and Explainability in Binary Activated Neural Networks
Abstract: We study the use of binary activated neural networks as interpretable and explainable predictors in the context of regression tasks on tabular data; more specifically, we provide guarantees on their expressiveness, present an approach based on the efficient computation of SHAP values for quantifying the relative importance of the features, hidden neurons and even weights. As the model's simplicity is instrumental in achieving interpretability, we propose a greedy algorithm for building compact binary activated networks. This approach doesn't need to fix an architecture for the network in advance: it is built one layer at a time, one neuron at a time, leading to predictors that aren't needlessly complex for a given task.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.