Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Exponential Tails and Asymmetry Relations for the Spread of Biased Random Walks (2209.03410v1)

Published 7 Sep 2022 in cond-mat.stat-mech and cond-mat.dis-nn

Abstract: Exponential, and not Gaussian, decay of probability density functions was studied by Laplace in the context of his analysis of errors. Such Laplace propagators for the diffusive motion of single particles in disordered media were recently observed in numerous experimental systems. What will happen to this universality when an external driving force is applied? Using the ubiquitous continuous time random walk with bias, and the Crooks relation in conjunction with large deviations theory, we derive two properties of the positional probability density function $P_F(x,t)$ that hold for a wide spectrum of random walk models: (I) Universal asymmetric exponential decay of $P_F(X,t)$ for large $|X|$, and (II) Existence of a time transformation that for large $|X|$ allows to express $P_F(X,t)$ in terms of the propagator of the unbiased process (measured at a shorter time). These findings allow us to establish how the symmetric exponential-like tails, measured in many unbiased processes, will transform into asymmetric Laplace tails when an external force is applied.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.