Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Packets of Diffusing Particles Exhibit Universal Exponential Tails (1907.10002v2)

Published 23 Jul 2019 in cond-mat.stat-mech

Abstract: Brownian motion is a Gaussian process described by the central limit theorem. However, exponential decays of the positional probability density function $P(X,t)$ of packets of spreading random walkers, were observed in numerous situations that include glasses, live cells and bacteria suspensions. We show that such exponential behavior is generally valid in a large class of problems of transport in random media. By extending the Large Deviations approach for a continuous time random walk we uncover a general universal behavior for the decay of the density. It is found that fluctuations in the number of steps of the random walker, performed at finite time, lead to exponential decay (with logarithmic corrections) of $P(X,t)$. This universal behavior holds also for short times, a fact that makes experimental observations readily achievable.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.