Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multi-Scale Attention-based Multiple Instance Learning for Classification of Multi-Gigapixel Histology Images (2209.03041v1)

Published 7 Sep 2022 in cs.CV, cs.AI, and cs.LG

Abstract: Histology images with multi-gigapixel of resolution yield rich information for cancer diagnosis and prognosis. Most of the time, only slide-level label is available because pixel-wise annotation is labour intensive task. In this paper, we propose a deep learning pipeline for classification in histology images. Using multiple instance learning, we attempt to predict the latent membrane protein 1 (LMP1) status of nasopharyngeal carcinoma (NPC) based on haematoxylin and eosin-stain (H&E) histology images. We utilised attention mechanism with residual connection for our aggregation layers. In our 3-fold cross-validation experiment, we achieved average accuracy, AUC and F1-score 0.936, 0.995 and 0.862, respectively. This method also allows us to examine the model interpretability by visualising attention scores. To the best of our knowledge, this is the first attempt to predict LMP1 status on NPC using deep learning.

Citations (10)

Summary

We haven't generated a summary for this paper yet.