Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Model-free prediction of multistability using echo state network (2208.14805v1)

Published 11 Aug 2022 in nlin.AO and nlin.CD

Abstract: In the field of complex dynamics, multistable attractors have been gaining a significant attention due to its unpredictability in occurrence and extreme sensitivity to initial conditions. Co-existing attractors are abundant in diverse systems ranging from climate to finance, ecological to social systems. In this article, we investigate a data-driven approach to infer different dynamics of a multistable system using echo state network (ESN). We start with a parameter-aware reservoir and predict diverse dynamics for different parameter values. Interestingly, machine is able to reproduce the dynamics almost perfectly even at distant parameters which lie considerably far from the parameter values related to the training dynamics. In continuation, we can predict whole bifurcation diagram significant accuracy as well. We extend this study for exploring various dynamics of multistable attractors at unknown parameter value. While, we train the machine with the dynamics of only one attarctor at parameter $p$, it can capture the dynamics of co-existing attractor at a new parameter value $p+\Delta p$. Continuing the simulation for multiple set of initial conditions, we can identify the basins for different attractors. We generalize the results by applying the scheme on two distinct multistable systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.