Papers
Topics
Authors
Recent
Search
2000 character limit reached

Sparsification of the regularized magnetic Laplacian with multi-type spanning forests

Published 31 Aug 2022 in cs.SI, cs.LG, and stat.ML | (2208.14797v2)

Abstract: In this paper, we consider a ${\rm U}(1)$-connection graph, that is, a graph where each oriented edge is endowed with a unit modulus complex number that is conjugated under orientation flip. A natural replacement for the combinatorial Laplacian is then the magnetic Laplacian, an Hermitian matrix that includes information about the graph's connection. Magnetic Laplacians appear, e.g., in the problem of angular synchronization. In the context of large and dense graphs, we study here sparsifiers of the magnetic Laplacian $\Delta$, i.e., spectral approximations based on subgraphs with few edges. Our approach relies on sampling multi-type spanning forests (MTSFs) using a custom determinantal point process, a probability distribution over edges that favours diversity. In a word, an MTSF is a spanning subgraph whose connected components are either trees or cycle-rooted trees. The latter partially capture the angular inconsistencies of the connection graph, and thus provide a way to compress the information contained in the connection. Interestingly, when the connection graph has weakly inconsistent cycles, samples from the determinantal point process under consideration can be obtained `a la Wilson, using a random walk with cycle popping. We provide statistical guarantees for a choice of natural estimators of the connection Laplacian, and investigate two practical applications of our sparsifiers: ranking with angular synchronization and graph-based semi-supervised learning. From a statistical perspective, a side result of this paper of independent interest is a matrix Chernoff bound with intrinsic dimension, which allows considering the influence of a regularization -- of the form $\Delta + q \mathbb{I}$ with $q>0$ -- on sparsification guarantees.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (86)
  1. L. A. Adamic and N. Glance. The Political Blogosphere and the 2004 US Election. In Proceedings of the WWW-2005 Workshop on the Weblogging Ecosystem, 2005. URL https://dl.acm.org/doi/10.1145/1134271.1134277.
  2. R. Ahlswede and A. Winter. Strong Converse for Identification via Quantum Channels. IEEE Transactions on Information Theory, 48(3):569–579, 2002. URL https://ieeexplore.ieee.org/document/985947.
  3. D. Aldous and J. A. Fill. Reversible Markov Chains and Random Walks on Graphs, 2002. Unfinished monograph, recompiled 2014, available at http://www.stat.berkeley.edu/$∼$aldous/RWG/book.html.
  4. D. J. Aldous. The Random Walk Construction of Uniform Spanning Trees and Uniform Labelled Trees. SIAM Journal on Discrete Mathematics, 3(4):450–465, 1990. URL https://doi.org/10.1137/0403039.
  5. Spectral Sparsification and Regret Minimization Beyond Matrix Multiplicative Updates. In Proceedings of the Forty-Seventh Annual ACM Symposium on Theory of Computing, STOC ’15, pages 237–245, New York, NY, USA, 2015. Association for Computing Machinery. URL https://doi.org/10.1145/2746539.2746610.
  6. Log-concave polynomials IV: approximate exchange, tight mixing times, and near-optimal sampling of forests. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of Computing, Virtual Event, Italy, June 21-25, 2021, pages 408–420. ACM, 2021. URL https://doi.org/10.1145/3406325.3451091.
  7. Convergence Theory for Preconditioned Eigenvalue Solvers in a Nutshell. Foundations of Computational Mathematics, 17(3):713–727, 2017. URL https://doi.org/10.1007/s10208-015-9297-1.
  8. L. Avena and A. Gaudillière. Two Applications of Random Spanning Forests. Journal of Theoretical Probability, 31:1975–2004, 2018. URL https://link.springer.com/article/10.1007/s10959-017-0771-3#citeas.
  9. A Cheeger Inequality for the Graph Connection Laplacian. SIAM Journal on Matrix Analysis and Applications, 34(4):1611–1630, 2013. URL https://doi.org/10.1137/120875338.
  10. Estimating the Inverse Trace Using Random Forests on Graphs. In XVIIème colloque GRETSI (GRETSI 2019), 2020. URL https://hal.archives-ouvertes.fr/hal-02319194.
  11. A faster sampler for discrete determinantal point processes. In International Conference on Artificial Intelligence and Statistics, pages 5582–5592. PMLR, 2023. URL https://proceedings.mlr.press/v206/barthelme23a.html.
  12. Spectral Sparsification of Graphs: Theory and Algorithms. Commun. ACM, 56(8):87–94, 2013. URL https://doi.org/10.1145/2492007.2492029.
  13. Twice-Ramanujan Sparsifiers. SIAM Review, 56(2):315–334, 2014. URL http://www.jstor.org/stable/24248502.
  14. G. Berkolaiko. Nodal Count of Graph Eigenfunctions via Magnetic Perturbation. Analysis & PDE, 6:1213–1233, 2013. URL https://msp.org/apde/2013/6-5/p08.xhtml.
  15. A. Broder. Generating Random Spanning Trees. In Proceedings of the 30th Annual Symposium on Foundations of Computer Science, SFCS ’89, pages 442–447, USA, 1989. IEEE Computer Society. URL https://doi.org/10.1109/SFCS.1989.63516.
  16. Graph Sparsification, Spectral Sketches, and Faster Resistance Computation via Short Cycle Decompositions. SIAM Journal on Computing, 0(0):FOCS18–85–FOCS18–157, 2018. URL https://doi.org/10.1137/19M1247632.
  17. Uniform sampling for matrix approximation. In Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, pages 181–190, 2015. URL https://arxiv.org/abs/1408.5099.
  18. Y. Colin de Verdière. Spectres de Graphes, volume 4. Paris: Société Mathématique de France, 1998. URL http://www-fourier.univ-grenoble-alpes.fr/~ycolver/All-Articles/98a.pdf.
  19. Essential Self-adjointness for Combinatorial Schrödinger Operators III- Magnetic Fields. Annales de la Faculté des sciences de Toulouse : Mathématiques, Ser. 6, 20(3):599–611, 2011. URL https://afst.centre-mersenne.org/articles/10.5802/afst.1319/.
  20. M. Cucuringu. Sync-Rank: Robust Ranking, Constrained Ranking and Rank Aggregation via Eigenvector and SDP Synchronization. IEEE Transactions on Network Science and Engineering, 3(1):58–79, 2016. URL https://doi.org/10.1109/TNSE.2016.2523761.
  21. Sensor Network Localization by Eigenvector Synchronization over the Euclidean Group. ACM Transactions on Sensor Networks, 8(3), 2012a. URL https://doi.org/10.1145/2240092.2240093.
  22. Eigenvector Synchronization, Graph Rigidity and the Molecule Problem. Information and Inference: A Journal of the IMA, 1(1):21–67, 12 2012b. URL https://doi.org/10.1093/imaiai/ias002.
  23. C. Davis and W. M. Kahan. The Rotation of Eigenvectors by a Perturbation. III. SIAM Journal on Numerical Analysis, 7(1):1–46, 1970. URL https://doi.org/10.1137/0707001.
  24. Sampling Random Spanning Trees Faster than Matrix Multiplication. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pages 730–742, New York, NY, USA, 2017. Association for Computing Machinery. URL https://doi.org/10.1145/3055399.3055499.
  25. M. Fanuel and R. Bardenet. On the Number of Steps of CyclePopping in Weakly Inconsistent U⁢(1)𝑈1U(1)italic_U ( 1 )-Connection Graphs, in preparation. 2024.
  26. Magnetic Eigenmaps for the Visualization of Directed Networks. Applied and Computational Harmonic Analysis, 44:189–199, 2018. URL https://www.sciencedirect.com/science/article/abs/pii/S1063520317300052.
  27. R. Forman. Determinants of Laplacians on Graphs. Topology, 32(1):35–46, 1993. URL https://www.sciencedirect.com/science/article/pii/004093839390035T.
  28. A General Framework for Graph Sparsification. In Proceedings of the Forty-Third Annual ACM Symposium on Theory of Computing, STOC ’11, pages 71–80, New York, NY, USA, 2011. Association for Computing Machinery. URL https://doi.org/10.1145/1993636.1993647.
  29. J. Geweke. Bayesian Inference in Econometric Models Using Monte Carlo Integration. Econometrica, 57(6):1317–1339, 1989. URL http://www.jstor.org/stable/1913710.
  30. H. Guo and K. He. Tight Bounds for Popping Algorithms. Random Structures & Algorithms, 57(2):371–392, 2020. URL https://onlinelibrary.wiley.com/doi/abs/10.1002/rsa.20928.
  31. H. Guo and M. Jerrum. Approximately Counting Bases of Bicircular Matroids. Combinatorics, Probability and Computing, 30(1):124–135, 2021. URL https://doi.org/10.1017/S0963548320000292.
  32. A. Gut. Probability: a graduate course, volume 200. Springer, 2006. URL https://doi.org/10.1007/978-1-4614-4708-5.
  33. J. Hermon and J. Salez. Modified log-Sobolev inequalities for strong-Rayleigh measures. The Annals of Applied Probability, 33(2):1501–1514, 2023. URL https://doi.org/10.1214/22-AAP1847.
  34. Determinantal Processes and Independence. Probability Surveys, 3:206–229, 2006. URL https://doi.org/10.1214/154957806000000078.
  35. Solving jigsaw puzzles by the graph connection laplacian. SIAM Journal on Imaging Sciences, 13(4):1717–1753, 2020. URL https://doi.org/10.1137/19M1290760.
  36. A. Kassel. Learning About Critical Phenomena from Scribbles and Sandpiles. ESAIM: Proc., 51:60–73, 2015. URL https://doi.org/10.1051/proc/201551004.
  37. A. Kassel and R. Kenyon. Random Curves on Surfaces Induced from the Laplacian Determinant. Annals of Probability, 45(2):932–964, 2017. URL https://doi.org/10.1214/15-AOP1078.
  38. A. Kassel and T. Lévy. A Colourful Path to Matrix-tree Theorems. Algebraic Combinatorics, 3(2):471–482, 2020. URL https://alco.centre-mersenne.org/articles/10.5802/alco.100/.
  39. Scalar and Matrix Chernoff Bounds from ℓ∞subscriptℓ\ell_{\infty}roman_ℓ start_POSTSUBSCRIPT ∞ end_POSTSUBSCRIPT-Independence. In Proceedings of the 2022 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 3732–3753, 2022. URL https://arxiv.org/abs/2111.02177.
  40. J. A. Kelner and A. Mądry. Faster Generation of Random Spanning Trees. In 2009 50th Annual IEEE Symposium on Foundations of Computer Science, pages 13–21, 2009. URL https://doi.org/10.1109/FOCS.2009.75.
  41. R. Kenyon. Spanning Forests and the Vector Bundle Laplacian. Annals of Probability, 39(5):1983–2017, 09 2011. URL https://doi.org/10.1214/10-AOP596.
  42. R. Kenyon. Determinantal Spanning Forests on Planar Graphs. Annals of Probability, 47(2):952–988, 03 2019. URL https://doi.org/10.1214/18-AOP1276.
  43. A. Knyazev and K. Neymeyr. A Geometric Theory for Preconditioned Inverse Iteration III: A Short and Sharp Convergence Estimate for Generalized Eigenvalue Problems. Linear Algebra and its Applications, 358(1):95–114, 2003. URL https://www.sciencedirect.com/science/article/pii/S002437950100461X.
  44. A. Kulesza and B. Taskar. Determinantal Point Processes for Machine Learning. Foundations and Trends in Machine Learning, 5(2-3):123–286, 2012. URL https://arxiv.org/ct?url=https%3A%2F%2Fdx.doi.org%2F10.1561%2F2200000044&v=3ca59876.
  45. R. Kyng and Z. Song. A Matrix Chernoff Bound for Strongly Rayleigh Distributions and Spectral Sparsifiers from a few Random Spanning Trees. In 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS), pages 373–384, 2018. URL https://arxiv.org/abs/1810.08345.
  46. Sparsified Cholesky and Multigrid Solvers for Connection Laplacians. In Proceedings of the Forty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’16, pages 842–850, New York, NY, USA, 2016. Association for Computing Machinery. URL https://doi.org/10.1145/2897518.2897640.
  47. Exact sampling of determinantal point processes without eigendecomposition. Journal of Applied Probability, 57(4):1198–1221, 2020. URL https://doi.org/10.1017/jpr.2020.56.
  48. Determinantal Point Process Models and Statistical Inference. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 77(4):853–877, 2015. URL https://rss.onlinelibrary.wiley.com/doi/abs/10.1111/rssb.12096.
  49. Y. T. Lee and H. Sun. Constructing Linear-Sized Spectral Sparsification in Almost-Linear Time. SIAM Journal on Computing, 47(6):2315–2336, 2018. URL https://doi.org/10.1137/16M1061850.
  50. G. Lerman and Y. Shi. Robust group synchronization via cycle-edge message passing. Foundations of Computational Mathematics, 22(6):1665–1741, 2022. URL https://doi.org/10.1007/s10208-021-09532-w.
  51. Community structure in large networks: Natural cluster sizes and the absence of large well-defined clusters. Internet Mathematics, 6(1):29–123, 2009. URL https://arxiv.org/abs/0810.1355.
  52. R. Lyons. Determinantal Probability Measures. Publications Mathématiques de l’IHÉS, 98:167–212, 2003. URL http://eudml.org/doc/104195.
  53. O. Macchi. The Coincidence Approach to Stochastic Point Processes. Advances in Applied Probability, 7(1):83–122, 1975. URL http://www.jstor.org/stable/1425855.
  54. P. Marchal. Loop-Erased Random Walks, Spanning Trees and Hamiltonian Cycles. Electron. Commun. Probab., 5:no. 4, 39–50, 1999. URL http://ecp.ejpecp.org/article/view/1016.
  55. Randomized Numerical Linear Algebra: Foundations and Algorithms. Acta Numerica, 29:403–572, 2020. URL https://doi.org/10.1017/S0962492920000021.
  56. Unsupervised ensembling of multiple software sensors with phase synchronization: a robust approach for electrocardiogram-derived respiration. Physiological Measurement, 2024. URL http://iopscience.iop.org/article/10.1088/1361-6579/ad290b.
  57. Fast Generation of Random Spanning Trees and the Effective Resistance Metric. In Proceedings of the 2015 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 2019–2036, 2015. URL https://epubs.siam.org/doi/abs/10.1137/1.9781611973730.134.
  58. R. Morgan. Preconditioning Eigenvalues and Some Comparison of Solvers. Journal of Computational and Applied Mathematics, 123(1):101–115, 2000. URL https://www.sciencedirect.com/science/article/pii/S0377042700003952.
  59. Preconditioning the Lanczos Algorithm for Sparse Symmetric Eigenvalue Problems. SIAM Journal on Scientific Computing, 14(3):585–593, 1993. URL https://doi.org/10.1137/0914037.
  60. R. Oliveira. Concentration of the Adjacency Matrix and of the Laplacian in Random Graphs with Independent Edges. 2009. URL https://arxiv.org/pdf/0911.0600.pdf.
  61. R. Oliveira. Sums of Random Hermitian Matrices and an Inequality by Rudelson. Electronic Communications in Probability, 15:203–212, 2010. URL https://doi.org/10.1214/ECP.v15-1544.
  62. R. Pemantle. Choosing a Spanning Tree for the Integer Lattice Uniformly. The Annals of Probability, 19(4):1559–1574, 1991. URL http://www.jstor.org/stable/2244527.
  63. R. Pemantle and Y. Peres. Concentration of Lipschitz Functionals of Determinantal and Other Strong Rayleigh Measures. Combinatorics, Probability and Computing, 23(1):140–160, 2014. URL https://www2.math.upenn.edu/~pemantle/papers/concentration.pdf.
  64. Y. Y. Pilavci. Algorithme de Wilson pour l’Algèbre Linéaire Randomisée. PhD thesis, Université Grenoble Alpes, 2022. URL https://www.theses.fr/2022GRALT081.
  65. Smoothing Graph Signals via Random Spanning Forests. In ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 5630–5634, 2020. URL https://ieeexplore.ieee.org/document/9054497.
  66. Graph tikhonov regularization and interpolation via random spanning forests. IEEE Transactions on Signal and Information Processing over Networks, 7:359–374, 2021. URL https://doi.org/10.1109/TSIPN.2021.3084879.
  67. A. Poncelet. Schramm’s Formula for Multiple Loop-erased Random Walks. Journal of Statistical Mechanics: Theory and Experiment, 2018(10):103106, 2018. URL https://doi.org/10.1088/1742-5468/aae5a6.
  68. J. Poulson. High-performance sampling of generic determinantal point processes. Philosophical Transactions of the Royal Society A, 378(2166):20190059, 2020. URL https://doi.org/10.1098/rsta.2019.0059.
  69. Trust management for the semantic web. In International semantic Web conference, pages 351–368. Springer, 2003. URL https://doi.org/10.1007/978-3-540-39718-2_23.
  70. Falkon: An Optimal Large Scale Kernel Method. In Advances in Neural Information Processing Systems 30, pages 3888–3898, 2017. URL https://proceedings.neurips.cc/paper/2017/file/05546b0e38ab9175cd905eebcc6ebb76-Paper.pdf.
  71. A. Schild. An Almost-Linear Time Algorithm for Uniform Random Spanning Tree Generation. In Proceedings of the 50th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2018, pages 214–227, New York, NY, USA, 2018. Association for Computing Machinery. URL https://doi.org/10.1145/3188745.3188852.
  72. T. Shirai and Y. Takahashi. Random Point Fields Associated with Certain Fredholm Determinants I: Fermion, Poisson and Boson Point Processes. Journal of Functional Analysis, 205(2):414–463, 2003. URL https://www.sciencedirect.com/science/article/pii/S002212360300171X.
  73. A. Singer. Angular Synchronization by Eigenvectors and Semidefinite Programming. Applied and Computational Harmonic Analysis, 30(1):20–36, 2011. URL https://www.sciencedirect.com/science/article/pii/S1063520310000205.
  74. A. Soshnikov. Determinantal random point fields. Russian Mathematical Surveys, 55(5):923–975, 2000. URL https://doi.org/10.1070/rm2000v055n05abeh000321.
  75. D. A. Spielman and N. Srivastava. Graph Sparsification by Effective Resistances. SIAM Journal on Computing, 40(6):1913–1926, 2011. URL https://doi.org/10.1137/080734029.
  76. Nearly Linear Time Algorithms for Preconditioning and Solving Symmetric, Diagonally Dominant Linear Systems. SIAM Journal on Matrix Analysis and Applications, 35(3):835–885, 2014. URL https://doi.org/10.1137/090771430.
  77. J. A. Tropp. An Introduction to Matrix Concentration Inequalities. Foundations and Trends® in Machine Learning, 8(1-2):1–230, 2015. URL http://dx.doi.org/10.1561/2200000048.
  78. N. K. Vishnoi. Lx = b. Foundations and Trends® in Theoretical Computer Science, 8(1–2):1–141, 2013. URL http://dx.doi.org/10.1561/0400000054.
  79. D. B. Wilson. Generating Random Spanning Trees More Quickly than the Cover Time. In Proceedings of the Twenty-Eighth Annual ACM Symposium on Theory of Computing, STOC ’96, pages 296–303, New York, NY, USA, 1996. Association for Computing Machinery. URL https://doi.org/10.1145/237814.237880.
  80. S. Yu. Angular Embedding: A Robust Quadratic Criterion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 34(1):158–173, 2012. URL https://doi.org/10.1109/TPAMI.2011.107.
  81. S. X. Yu. Angular Embedding: From Jarring Intensity Differences to Perceived Luminance. In 2009 IEEE Conference on Computer Vision and Pattern Recognition, pages 2302–2309, 2009. URL https://doi.org/10.1109/CVPR.2009.5206673.
  82. A Useful Variant of the Davis—Kahan Theorem for Statisticians. Biometrika, 102(2):315–323, 2015. URL http://www.jstor.org/stable/43908537.
  83. Ranking and Sparsifying a Connection Graph. Internet Mathematics, 10(1-2):87–115, 2014. URL https://doi.org/10.1080/15427951.2013.800005.
  84. Y. Zhong and N. Boumal. Near-Optimal Bounds for Phase Synchronization. SIAM Journal on Optimization, 28(2):989–1016, 2018. URL https://doi.org/10.1137/17M1122025.
  85. Learning with Local and Global Consistency. In S. Thrun, L. Saul, and B. Schölkopf, editors, Advances in Neural Information Processing Systems, volume 16. MIT Press, 2004. URL https://proceedings.neurips.cc/paper/2003/file/87682805257e619d49b8e0dfdc14affa-Paper.pdf.
  86. A. Zouzias. A Matrix Hyperbolic Cosine Algorithm and Applications. In A. Czumaj, K. Mehlhorn, A. Pitts, and R. Wattenhofer, editors, Automata, Languages, and Programming, pages 846–858, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. URL http://www.cs.toronto.edu/~zouzias/downloads/papers/hypercosine_zouzias_new.pdf.
Citations (4)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.