Continuous differentiability of a weak solution to very singular elliptic equations involving anisotropic diffusivity (2208.14640v2)
Abstract: In this paper we consider a very singular elliptic equation that involves an anisotropic diffusion operator, including one-Laplacian, and is perturbed by a $p$-Laplacian-type diffusion operator with $1<p<\infty$. This equation seems analytically difficult to handle near a facet, the place where the gradient vanishes. Our main purpose is to prove that weak solutions are continuously differentiable even across the facet. Here it is of interest to know whether a gradient is continuous when it is truncated near a facet. To answer this affirmatively, we consider an approximation problem, and use standard methods including De Giorgi's truncation and freezing coefficient methods.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.