Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 155 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 213 tok/s Pro
GPT OSS 120B 422 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Bayesian Multinomial Logistic Regression for Numerous Categories (2208.14537v1)

Published 30 Aug 2022 in stat.CO and stat.ME

Abstract: While multinomial logistic regression is a useful tool for classification among multiple categories, the posterior sampling of Bayesian implementations is computationally burdensome when the number of categories is large. In this paper, we show that the appropriate data augmentation technique provides faster posterior sampling than alternatives in the literature. This speed up comes from two sources: simpler posterior conditional distributions on the coefficients and the ability to parallelize parameter draws. In simulation studies, we demonstrate that the effective sampling rate of our posterior sampling approach is double that of competing methods when working with a large number of categories, even without parallelized computations. Furthermore, this computation time only increases linearly as the number of categories increases. Our corresponding R package is available on Github.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube