Addition of tabulated equation of state and neutrino leakage support to IllinoisGRMHD (2208.14487v3)
Abstract: We have added support for realistic, microphysical, finite-temperature equations of state (EOS) and neutrino physics via a leakage scheme to IllinoisGRMHD, an open-source GRMHD code for dynamical spacetimes in the Einstein Toolkit. These new features are provided by two new, NRPy+-based codes: NRPyEOS, which performs highly efficient EOS table lookups and interpolations, and NRPyLeakage, which implements a new, AMR-capable neutrino leakage scheme in the Einstein Toolkit. We have performed a series of strenuous validation tests that demonstrate the robustness of these new codes, particularly on the Cartesian AMR grids provided by Carpet. Furthermore, we show results from fully dynamical GRMHD simulations of single unmagnetized neutron stars, and magnetized binary neutron star mergers. This new version of IllinoisGRMHD, as well as NRPyEOS and NRPyLeakage, is pedagogically documented in Jupyter notebooks and fully open source. The codes will be proposed for inclusion in an upcoming version of the Einstein Toolkit.
- B. P. Abbott et al. (LIGO Scientific and Virgo), Phys. Rev. Lett. 119, 161101 (2017a), arXiv:1710.05832 [gr-qc] .
- B. P. Abbott et al., Astrophys. J. 848, L12 (2017b), arXiv:1710.05833 [astro-ph.HE] .
- A. Murguia-Berthier et al., Astrophys. J. 919, 95 (2021), arXiv:2106.05356 [astro-ph.HE] .
- E. O’Connor and C. D. Ott, Class. Quant. Grav. 27, 114103 (2010), arXiv:0912.2393 [astro-ph.HE] .
- B. Giacomazzo and L. Rezzolla, Class. Quantum Grav. 24, S235 (2007), arXiv:gr-qc/0701109 .
- D. Radice and L. Rezzolla, Astron. Astrophys. 547, A26 (2012), arXiv:1206.6502 [astro-ph.IM] .
- Z. B. Etienne, V. Paschalidis, R. Haas, P. Moesta, and S. L. Shapiro, “IllinoisGRMHD: GRMHD code for dynamical spacetimes,” Astrophysics Source Code Library, record ascl:2004.003 (2020), ascl:2004.003 .
- L. E. Kidder et al., J. Comput. Phys. 335, 84 (2017), arXiv:1609.00098 [astro-ph.HE] .
- K. G. Felker and J. M. Stone, Journal of Computational Physics 375, 1365 (2018), arXiv:1711.07439 [astro-ph.IM] .
- S. Typel et al., pre-print (2022), arXiv:2203.03209 [astro-ph.HE] .
- stellarcollapse website, (Accessed in 2022), https://stellarcollapse.org/.
- K. S. Thorne, mnras 194, 439 (1981).
- S. Richers, Phys. Rev. D 102, 083017 (2020), arXiv:2009.09046 [astro-ph.HE] .
- E. O’Connor, Astrophys. J. Suppl. 219, 24 (2015), arXiv:1411.7058 [astro-ph.HE] .
- E. P. O’Connor and S. M. Couch, Astrophys. J. 854, 63 (2018), arXiv:1511.07443 [astro-ph.HE] .
- K. A. van Riper and J. M. Lattimer, Astrophys. J. 249, 270 (1981).
- S. Rosswog and E. Ramirez-Ruiz, Mon. Not. Roy. Astron. Soc. 336, L7 (2002), arXiv:astro-ph/0207576 .
- S. Rosswog and M. Liebendoerfer, Mon. Not. Roy. Astron. Soc. 342, 673 (2003), arXiv:astro-ph/0302301 .
- Y. Sekiguchi, Prog. Theor. Phys. 124, 331 (2010), arXiv:1009.3320 [astro-ph.HE] .
- D. M. Siegel and B. D. Metzger, Astrophys. J. 858, 52 (2018), arXiv:1711.00868 [astro-ph.HE] .
- N. Deppe, W. Throwe, L. E. Kidder, N. L. Vu, F. Hébert, J. Moxon, C. Armaza, G. S. Bonilla, Y. Kim, P. Kumar, G. Lovelace, A. Macedo, K. C. Nelli, E. O’Shea, H. P. Pfeiffer, M. A. Scheel, S. A. Teukolsky, N. A. Wittek, et al., “SpECTRE v2022.04.04,” 10.5281/zenodo.6412468 (2022).
- B. Giacomazzo, F. Cipolletta, J. Kalinani, R. Ciolfi, L. Sala, B. Giudici, and E. Giangrandi, “The spritz code,” (2020).
- L. R. Werneck and Z. B. Etienne, “IllinoisGRMHD GitHub repository,” (Accessed in 2022), https://github.com/IllinoisGRMHD/.
- M. Ruiz and S. L. Shapiro, Phys. Rev. D 96, 084063 (2017), arXiv:1709.00414 [astro-ph.HE] .
- F. G. L. Armengol et al., pre-print (2021), arXiv:2112.09817 [astro-ph.HE] .
- O. Porth et al. (Event Horizon Telescope), Astrophys. J. Suppl. 243, 26 (2019), arXiv:1904.04923 [astro-ph.HE] .
- F. Loffler et al., Class. Quant. Grav. 29, 115001 (2012), arXiv:1111.3344 [gr-qc] .
- T. W. Baumgarte and S. L. Shapiro, Numerical Relativity: Solving Einstein’s Equations on the Computer (Cambridge University Press, 2010).
- M. Shibata and T. Nakamura, Phys. Rev. D 52, 5428 (1995).
- T. W. Baumgarte and S. L. Shapiro, Phys. Rev. D 59, 024007 (1999), arXiv:gr-qc/9810065 .
- P. Anninos and P. C. Fragile, Astrophys. J. Suppl. 144, 243 (2003), arXiv:astro-ph/0206265 .
- T. W. Baumgarte and S. L. Shapiro, Numerical Relativity: Starting from Scratch (Cambridge University Press, 2021).
- E. O’Connor and C. D. Ott, “eosdrivercxx bitbucket repository,” (Accessed in 2022), https://bitbucket.org/zelmani/eosdrivercxx.
- E. O’Connor and C. D. Ott, arXiv e-prints (2011), arXiv:1103.2117 [astro-ph.HE] .
- P. Colella and P. R. Woodward, J. Comput. Phys. 54, 174 (1984).
- W. I. Newman and N. D. Hamlin, SIAM Journal on Scientific Computing 36, B661 (2014), https://doi.org/10.1137/140956749 .
- D. Siegel, “GRMHD_con2prim bitbucket repository,” (Accessed in 2022), https://bitbucket.org/dsiegel/grmhd_con2prim/.
- J. M. Lattimer and F. D. Swesty, Nucl. Phys. A 535, 331 (1991).
- Z. B. Etienne, “nrpytutorial: the NRPy+ GitHub repository,” (Accessed in 2022), https://github.com/zachetienne/nrpytutorial.
- E. Gourgoulhon, P. Grandclément, J.-A. Marck, J. Novak, and K. Taniguchi, “LORENE: Spectral methods differential equations solver,” Astrophysics Source Code Library, record ascl:1608.018 (2016), ascl:1608.018 .
- E. Gourgoulhon, P. Grandclément, and J. Novak, “LORENE: Langage Objet pour la RElativité NumériquE,” (Accessed in 2022), https://lorene.obspm.fr.
- J. Thornburg, Class. Quant. Grav. 21, 743 (2004), arXiv:gr-qc/0306056 .
- W. Kastaun and F. Galeazzi, Phys. Rev. D 91, 064027 (2015), arXiv:1411.7975 [gr-qc] .
- J. D. Hunter, Computing in Science & Engineering 9, 90 (2007).
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.