Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Interpolating between Rényi entanglement entropies for arbitrary bipartitions via operator geometric means (2208.14438v2)

Published 30 Aug 2022 in math-ph, math.MP, and quant-ph

Abstract: The asymptotic restriction problem for tensors can be reduced to finding all parameters that are normalized, monotone under restrictions, additive under direct sums and multiplicative under tensor products, the simplest of which are the flattening ranks. Over the complex numbers, a refinement of this problem, originating in the theory of quantum entanglement, is to find the optimal rate of entanglement transformations as a function of the error exponent. This trade-off can also be characterized in terms of the set of normalized, additive, multiplicative functionals that are monotone in a suitable sense, which includes the restriction-monotones as well. For example, the flattening ranks generalize to the (exponentiated) R\'enyi entanglement entropies of order $\alpha\in[0,1]$. More complicated parameters of this type are known, which interpolate between the flattening ranks or R\'enyi entropies for special bipartitions, with one of the parts being a single tensor factor. We introduce a new construction of subadditive and submultiplicative monotones in terms of a regularized R\'enyi divergence between many copies of the pure state represented by the tensor and a suitable sequence of positive operators. We give explicit families of operators that correspond to the flattening-based functionals, and show that they can be combined in a nontrivial way using weighted operator geometric means. This leads to a new characterization of the previously known additive and multiplicative monotones, and gives new submultiplicative and subadditive monotones that interpolate between the R\'enyi entropies for all bipartitions. We show that for each such monotone there exist pointwise smaller multiplicative and additive ones as well. In addition, we find lower bounds on the new functionals that are superadditive and supermultiplicative.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.