Papers
Topics
Authors
Recent
2000 character limit reached

Variational Convexity of Functions and Variational Sufficiency in Optimization (2208.14399v2)

Published 30 Aug 2022 in math.OC

Abstract: The paper is devoted to the study, characterizations, and applications of variational convexity of functions, the property that has been recently introduced by Rockafellar together with its strong counterpart. First we show that these variational properties of an extended-real-valued function are equivalent to, respectively, the conventional (local) convexity and strong convexity of its Moreau envelope. Then we derive new characterizations of both variational convexity and variational strong convexity of general functions via their second-order subdifferentials (generalized Hessians), which are coderivatives of subgradient mappings. We also study relationships of these notions with local minimizers and tilt-stable local minimizers. The obtained results are used for characterizing related notions of variational and strong variational sufficiency in composite optimization with applications to nonlinear programming.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.