Papers
Topics
Authors
Recent
2000 character limit reached

Deep Autoencoders for Anomaly Detection in Textured Images using CW-SSIM

Published 30 Aug 2022 in cs.CV and cs.LG | (2208.14045v1)

Abstract: Detecting anomalous regions in images is a frequently encountered problem in industrial monitoring. A relevant example is the analysis of tissues and other products that in normal conditions conform to a specific texture, while defects introduce changes in the normal pattern. We address the anomaly detection problem by training a deep autoencoder, and we show that adopting a loss function based on Complex Wavelet Structural Similarity (CW-SSIM) yields superior detection performance on this type of images compared to traditional autoencoder loss functions. Our experiments on well-known anomaly detection benchmarks show that a simple model trained with this loss function can achieve comparable or superior performance to state-of-the-art methods leveraging deeper, larger and more computationally demanding neural networks.

Citations (8)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.