Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 106 tok/s Pro
Kimi K2 187 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

PINION: Physics-informed neural network for accelerating radiative transfer simulations for cosmic reionization (2208.13803v2)

Published 29 Aug 2022 in astro-ph.CO

Abstract: With the advent of the Square Kilometre Array Observatory (SKAO), scientists will be able to directly observe the Epoch of Reionization by mapping the distribution of neutral hydrogen at different redshifts. While physically motivated results can be simulated with radiative transfer codes, these simulations are computationally expensive and can not readily produce the required scale and resolution simultaneously. Here we introduce the Physics-Informed neural Network for reIONization (PINION), which can accurately and swiftly predict the complete 4-D hydrogen fraction evolution from the smoothed gas and mass density fields from pre-computed N-body simulation. We trained PINION on the C$2$-Ray simulation outputs and a physics constraint on the reionization chemistry equation is enforced. With only five redshift snapshots and a propagation mask as a simplistic approximation of the ionizing photon mean free path, PINION can accurately predict the entire reionization history between $z=6$ and $12$. We evaluate the accuracy of our predictions by analysing the dimensionless power spectra and morphology statistics estimations against C$2$-Ray results. We show that while the network's predictions are in good agreement with simulation to redshift $z>7$, the network's accuracy suffers for $z<7$ primarily due to the oversimplified propagation mask. We motivate how PINION performance can be drastically improved and potentially generalized to large-scale simulations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.