Papers
Topics
Authors
Recent
2000 character limit reached

Rosenblatt's first theorem and frugality of deep learning (2208.13778v1)

Published 29 Aug 2022 in cs.LG and cs.AI

Abstract: First Rosenblatt's theorem about omnipotence of shallow networks states that elementary perceptrons can solve any classification problem if there are no discrepancies in the training set. Minsky and Papert considered elementary perceptrons with restrictions on the neural inputs: a bounded number of connections or a relatively small diameter of the receptive field for each neuron at the hidden layer. They proved that under these constraints, an elementary perceptron cannot solve some problems, such as the connectivity of input images or the parity of pixels in them. In this note, we demonstrated first Rosenblatt's theorem at work, showed how an elementary perceptron can solve a version of the travel maze problem, and analysed the complexity of that solution. We constructed also a deep network algorithm for the same problem. It is much more efficient. The shallow network uses an exponentially large number of neurons on the hidden layer (Rosenblatt's $A$-elements), whereas for the deep network the second order polynomial complexity is sufficient. We demonstrated that for the same complex problem deep network can be much smaller and reveal a heuristic behind this effect.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.