Novel phenomena of the Hartle-Hawking wave function (2208.12380v2)
Abstract: We find a novel phenomenon in the solution to the Wheeler-DeWitt equation by solving numerically the equation assuming $O(4)$-symmetry and imposing the Hartle-Hawking wave function as a boundary condition. In the slow-roll limit, as expected, the numerical solution gives the most dominant steepest-descent that describes the probability distribution for the initial condition of a universe. The probability is consistent with the Euclidean computations, and the overall shape of the wave function is compatible with analytical approximations, although there exist novel differences in the detailed probability computation. Our approach gives an alternative point of view of the no-boundary wave function from the wave function point of view. Possible interpretations and conceptual issues of this wave function are discussed.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.