Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Randomized sketching for Krylov approximations of large-scale matrix functions (2208.11447v3)

Published 24 Aug 2022 in math.NA and cs.NA

Abstract: The computation of f(A)b, the action of a matrix function on a vector, is a task arising in many areas of scientific computing. In many applications, the matrix A is sparse but so large that only a rather small number of Krylov basis vectors can be stored. Here we discuss a new approach to overcome these limitations by randomized sketching combined with an integral representation of f(A)b. Two different approximations are introduced, one based on sketched FOM and another based on sketched GMRES approximation. The convergence of the latter method is analyzed for Stieltjes functions of positive real matrices. We also derive a closed form expression for the sketched FOM approximant and bound its distance to the full FOM approximant. Numerical experiments demonstrate the potential of the presented sketching approaches.

Citations (13)

Summary

We haven't generated a summary for this paper yet.