Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sketched and truncated polynomial Krylov methods: Evaluation of matrix functions (2306.06481v3)

Published 10 Jun 2023 in math.NA and cs.NA

Abstract: Among randomized numerical linear algebra strategies, so-called sketching procedures are emerging as effective reduction means to accelerate the computation of Krylov subspace methods for, e.g., the solution of linear systems, eigenvalue computations, and the approximation of matrix functions. While there is plenty of experimental evidence showing that sketched Krylov solvers may dramatically improve performance over standard Krylov methods, many features of these schemes are still unexplored. We derive a new sketched Arnoldi-type relation that allows us to obtain several different new theoretical results. These lead to an improvement of our understanding of sketched Krylov methods, in particular by explaining why the frequently occurring sketched Ritz values far outside the spectral region of A do not negatively influence the convergence of sketched Krylov methods for f (A)b. Our findings also help to identify, among several possible equivalent formulations, the most suitable sketched approximations according to their numerical stability properties. These results are also employed to analyze the error of sketched Krylov methods in the approximation of the action of matrix functions, significantly contributing to the theory available in the current literature.

Citations (6)

Summary

We haven't generated a summary for this paper yet.