Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Krylov subspace restarting for matrix Laplace transforms (2205.13842v3)

Published 27 May 2022 in math.NA and cs.NA

Abstract: A common way to approximate $F(A)b$ -- the action of a matrix function on a vector -- is to use the Arnoldi approximation. Since a new vector needs to be generated and stored in every iteration, one is often forced to rely on restart algorithms which are either not efficient, not stable or only applicable to restricted classes of functions. We present a new representation of the error of the Arnoldi iterates if the function $F$ is given as a Laplace transform. Based on this representation we build an efficient and stable restart algorithm. In doing so we extend earlier work for the class of Stieltjes functions which are special Laplace transforms. We report several numerical experiments including comparisons with the restart method for Stieltjes functions.

Citations (3)

Summary

We haven't generated a summary for this paper yet.