Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 451 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Duality for asymptotic invariants of graded families (2208.11110v1)

Published 23 Aug 2022 in math.AC and math.AG

Abstract: The starting point of this paper is a duality for sequences of natural numbers which, under mild hypotheses, interchanges subadditive and superadditive sequences and inverts their asymptotic growth constants. We are motivated to explore this sequence duality since it arises naturally in at least two important algebraic-geometric contexts. The first context is Macaulay-Matlis duality, where the sequence of initial degrees of the family of symbolic powers of a radical ideal is dual to the sequence of Castelnuovo-Mumford regularity values of a quotient by ideals generated by powers of linear forms. This philosophy is drawn from an influential paper of Emsalem and Iarrobino. We generalize this duality to differentially closed graded filtrations of ideals. In a different direction, we establish a duality between the sequence of Castelnuovo-Mumford regularity values of the symbolic powers of certain ideals and a geometrically inspired sequence we term the jet separation sequence. We show that this duality underpins the reciprocity between two important geometric invariants: the multipoint Seshadri constant and the asymptotic regularity of a set of points in projective space.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.