Entire subsolutions of a kind of k-Hessian type equations with gradient terms (2208.11103v1)
Abstract: In this paper, we consider a kind of $k$-Hessian type equations $S_k{\frac{1}{k}}(D2u+\mu|D u|I)= f(u)$ in $\mathbb{R}n$, and provide a necessary and sufficient condition of $f$ on the existence and nonexistence of entire admissible subsolutions, which can be regarded as a generalized Keller-Osserman condition. The existence and nonexistence results are proved in different ranges of the parameter $\mu$ respectively, which embrace the standard Hessian equation case ($\mu=0$) by Ji and Bao (Proc Amer Math Soc 138: 175--188, 2010) as a typical example. The difference between the semilinear case ($k=1$) and the fully nonlinear case ($k\ge 2$) is also concerned.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.