Cluster expansion constructed over Jacobi-Legendre polynomials for accurate force fields (2208.10292v3)
Abstract: We introduce a compact cluster expansion method, constructed over Jacobi and Legendre polynomials, to generate highly accurate and flexible machine-learning force fields. The constituent many-body contributions are separated, interpretable and adaptable to replicate the physical knowledge of the system. In fact, the flexibility introduced by the use of the Jacobi polynomials allows us to impose, in a natural way, constrains and symmetries to the cluster expansion. This has the effect of reducing the number of parameters needed for the fit and of enforcing desired behaviours of the potential. For instance, we show that our Jacobi-Legendre cluster expansion can be designed to generate potentials with a repulsive tail at short inter-atomic distances, without the need of imposing any external function. Our method is here continuously compared with available machine-learning potential schemes, such as the atomic cluster expansion and potentials built over the bispectrum. As an example we construct a Jacobi-Legendre potential for carbon, by training a slim and accurate model capable of describing crystalline graphite and diamond, as well as liquid and amorphous elemental carbon.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.