Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Search for Mono-Higgs Signals in $b\bar b$ Final States Using Deep Neural Networks (2208.10133v4)

Published 22 Aug 2022 in hep-ph

Abstract: We study mono-Higgs signatures emerging in an illustrative new physics scenario involving Standard Model Higgs boson decays to bottom quark pairs using Hybrid Deep Neural Networks. We use a Multi-Layer Perceptron to analyze the kinematic observables and optimize the signal-to-background discrimination. The global color flow structure of hard jets emerging from the decay of heavy particles with different color charges is crucial to single out the mono-Higgs signature. Upon embedding the different color flow structures for signal and backgrounds into constructed images, we use a Convolution Neural Network to analyze the latter. Specifically, the approach takes initially a mono-type data as input, frittering away invaluable multi-source and multi-scale information. We then discuss a general architecture of Hybrid Deep Neural Networks that supports instead mixed input data. In comparison with single input Deep Neural Networks, like MultiLayers Perceptron or Convolution Neural Network, the Hybrid Deep Neural Networks provide higher capacity in feature extraction and thus in signal vs background classification performance. We provide reference results for the case of the High-Luminosity Large Hadron Collider.

Citations (5)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.