Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 91 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 470 tok/s Pro
Claude Sonnet 4 40 tok/s Pro
2000 character limit reached

Looking For A Match: Self-supervised Clustering For Automatic Doubt Matching In e-learning Platforms (2208.09600v1)

Published 20 Aug 2022 in cs.LG

Abstract: Recently, e-learning platforms have grown as a place where students can post doubts (as a snap taken with smart phones) and get them resolved in minutes. However, the significant increase in the number of student-posted doubts with high variance in quality on these platforms not only presents challenges for teachers' navigation to address them but also increases the resolution time per doubt. Both are not acceptable, as high doubt resolution time hinders the students learning progress. This necessitates ways to automatically identify if there exists a similar doubt in repository and then serve it to the teacher as the plausible solution to validate and communicate with the student. Supervised learning techniques (like Siamese architecture) require labels to identify the matches, which is not feasible as labels are scarce and expensive. In this work, we, thus, developed a label-agnostic doubt matching paradigm based on the representations learnt via self-supervised technique. Building on prior theoretical insights of BYOL (bootstrap your own latent space), we propose custom BYOL which combines domain-specific augmentation with contrastive objective over a varied set of appropriately constructed data views. Results highlighted that, custom BYOL improves the top-1 matching accuracy by approximately 6\% and 5\% as compared to both BYOL and supervised learning instances, respectively. We further show that both BYOL-based learning instances performs either on par or better than human labeling.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.