Approximating Symmetrized Estimators of Scatter via Balanced Incomplete U-Statistics (2208.09426v2)
Abstract: We derive limiting distributions of symmetrized estimators of scatter, where instead of all $n(n-1)/2$ pairs of the $n$ observations we only consider $nd$ suitably chosen pairs, $1 \le d < \lfloor n/2\rfloor$. It turns out that the resulting estimators are asymptotically equivalent to the original one whenever $d = d(n) \to \infty$ at arbitrarily slow speed. We also investigate the asymptotic properties for arbitrary fixed $d$. These considerations and numerical examples indicate that for practical purposes, moderate fixed values of $d$ between,say, $10$ and $20$ yield already estimators which are computationally feasible and rather close to the original ones.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.