Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Test-time Training for Data-efficient UCDR (2208.09198v3)

Published 19 Aug 2022 in cs.CV

Abstract: Image retrieval under generalized test scenarios has gained significant momentum in literature, and the recently proposed protocol of Universal Cross-domain Retrieval is a pioneer in this direction. A common practice in any such generalized classification or retrieval algorithm is to exploit samples from many domains during training to learn a domain-invariant representation of data. Such criterion is often restrictive, and thus in this work, for the first time, we explore the generalized retrieval problem in a data-efficient manner. Specifically, we aim to generalize any pre-trained cross-domain retrieval network towards any unknown query domain/category, by means of adapting the model on the test data leveraging self-supervised learning techniques. Toward that goal, we explored different self-supervised loss functions~(for example, RotNet, JigSaw, Barlow Twins, etc.) and analyze their effectiveness for the same. Extensive experiments demonstrate the proposed approach is simple, easy to implement, and effective in handling data-efficient UCDR.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.