Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 111 tok/s Pro
Kimi K2 161 tok/s Pro
GPT OSS 120B 412 tok/s Pro
Claude Sonnet 4 35 tok/s Pro
2000 character limit reached

Non-connected Lie groups, twisted equivariant bundles and coverings (2208.09022v2)

Published 18 Aug 2022 in math.DG and math.AG

Abstract: Let $\Gamma$ be a finite group acting on a Lie group $G$. We consider a class of group extensions $1 \to G \to \hat{G} \to \Gamma \to 1$ defined by this action and a $2$-cocycle of $\Gamma$ with values in the centre of $G$. We establish and study a correspondence between $\hat{G}$-bundles on a manifold and twisted $\Gamma$-equivariant bundles with structure group $G$ on a suitable Galois $\Gamma$-covering of the manifold. We also describe this correspondence in terms of non-abelian cohomology. Our results apply, in particular, to the case of a compact or reductive complex Lie group $\hat{G}$, since such a group is always isomorphic to an extension as above, where $G$ is the connected component of the identity and $\Gamma$ is the group of connected components of $\hat{G}$.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.