Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Askey-Wilson Polynomials and Branching Laws (2208.08411v2)

Published 17 Aug 2022 in math.CA and math.RT

Abstract: Connection coefficient formulas for special functions describe change of basis matrices under a parameter change, for bases formed by the special functions. Such formulas are related to branching questions in representation theory. The Askey-Wilson polynomials are one of the most general 1-variable special functions. Our main results are connection coefficient formulas for shifting one of the parameters of the nonsymmetric Askey-Wilson polynomials. We also show how one of these results can be used to re-prove an old result of Askey and Wilson in the symmetric case. The method of proof combines establishing a simpler special case of shifting one parameter by a factor of q with using a co-cycle condition property of the transition matrices involved. Supporting computations use the Noumi representation and are based on simple formulas for how some basic Hecke algebra elements act on natural almost symmetric Laurent polynomials.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.