Multi-parameter maximal Fourier restriction
Abstract: The main result of this note is the strengthening of a quite arbitrary a priori Fourier restriction estimate to a multi-parameter maximal estimate of the same type. This allows us to discuss a certain multi-parameter Lebesgue point property of Fourier transforms, which replaces Euclidean balls by ellipsoids. Along the lines of the same proof, we also establish a $d$-parameter Menshov--Paley--Zygmund-type theorem for the Fourier transform on $\mathbb{R}d$. Such a result is interesting for $d\geq2$ because, in a sharp contrast with the one-dimensional case, the corresponding endpoint $L2$ estimate (i.e., a Carleson-type theorem) is known to fail since the work of C. Fefferman in 1970. Finally, we show that a Strichartz estimate for a given homogeneous constant-coefficient linear dispersive PDE can sometimes be strengthened to a certain pseudo-differential version.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.