Revisiting the propensity score's central role: Towards bridging balance and efficiency in the era of causal machine learning (2208.08065v2)
Abstract: About forty years ago, in a now--seminal contribution, Rosenbaum & Rubin (1983) introduced a critical characterization of the propensity score as a central quantity for drawing causal inferences in observational study settings. In the decades since, much progress has been made across several research fronts in causal inference, notably including the re-weighting and matching paradigms. Focusing on the former and specifically on its intersection with machine learning and semiparametric efficiency theory, we re-examine the role of the propensity score in modern methodological developments. As Rosenbaum & Rubin (1983)'s contribution spurred a focus on the balancing property of the propensity score, we re-examine the degree to which and how this property plays a role in the development of asymptotically efficient estimators of causal effects; moreover, we discuss a connection between the balancing property and efficient estimation in the form of score equations and propose a score test for evaluating whether an estimator achieves balance.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.