Papers
Topics
Authors
Recent
2000 character limit reached

Conservation laws and variational structure of damped nonlinear wave equations

Published 17 Aug 2022 in math-ph, math.AP, and math.MP | (2208.08026v2)

Abstract: All low-order conservation laws are found for a general class of nonlinear wave equations in one dimension with linear damping which is allowed to be time-dependent. Such equations arise in numerous physical applications and have attracted much attention in analysis. The conservation laws describe generalized momentum and boost momentum, conformal momentum, generalized energy, dilational energy, and light-cone energies. Both the conformal momentum and dilational energy have no counterparts for nonlinear undamped wave equations in one dimension. All of the conservation laws are obtainable through Noether's theorem, which is applicable because the damping term can be transformed into a time-dependent self-interaction term by a change of dependent variable. For several of the conservation laws, the corresponding variational symmetries have a novel form which is different than any of the well known variation symmetries admitted by nonlinear undamped wave equations in one dimension.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.