Retrospective Cost Parameter Estimation with Application to Space Weather Modeling (2208.07437v1)
Abstract: This chapter reviews standard parameter-estimation techniques and presents a novel gradient-, ensemble-, adjoint-free data-driven parameter estimation technique in the DDDAS framework. This technique, called retrospective cost parameter estimation (RCPE), is motivated by large-scale complex estimation models characterized by high-dimensional nonlinear dynamics, nonlinear parameterizations, and representational models. RCPE is illustrated by estimating unknown parameters in three examples. In the first example, salient features of RCPE are investigated by considering parameter estimation problem in a low-order nonlinear system. In the second example, RCPE is used to estimate the convective coefficient and the viscosity in the generalized Burgers equation by using a scalar measurement. In the final example, RCPE is used to estimate thermal conductivity coefficients that relate temporal temperature variation with the vertical gradient of the temperature in the atmosphere.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.