Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 28 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Noether Charge, Thermodynamics and Phase Transition of a Black Hole in the Schwarzschild-Anti-de Sitter-Beltrami spacetime (2208.07209v3)

Published 15 Aug 2022 in gr-qc

Abstract: In this work, we investigate thermodynamic properties and Hawking-Page phase transition of a black hole in the Schwarzschil-Anti-de Sitter-Beltrami (SAdSB) spacetime. We discuss the Beltrami or inertial coordinates of the Anti-de Sitter(AdS) spacetime. Transformation between the non-inertial and inertial coordinates of the AdS spacetime is formulated to construct the solution of spherical gravitating mass and other physical quantities. The Killing vector is determined to calculate the event horizon radius of this black hole. The entropy and the temperature of SAdSB black hole are determined by the Noether charge method and it is shown that the temperature is bounded by the Anti-de Sitter radius. Similarly, the Smarr relation and first law of black hole thermodynamics for the SAdSB spacetime have been formulated. The Gibbs free energy and heat capacity of this black hole are calculated and we consider the phase transition between small and large black holes. The first-order phase transition between the thermal AdS spacetime and large black hole phase is also investigated and the Hawking-Page temperature is computed and compared with the case of the Schwarzschild-Anti-de Sitter(SAdS) black hole.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (47)
  1. Jacob D. Bekenstein, “Black holes and entropy,” Phys. Rev. D 7, 2333–2346 (1973).
  2. S. W. Hawking, “Gravitational radiation from colliding black holes,” Phys. Rev. Lett. 26, 1344–1346 (1971).
  3. S. W. Hawking, “Particle Creation by Black Holes,” Commun. Math. Phys. 43, 199–220 (1975), [Erratum: Commun.Math.Phys. 46, 206 (1976)].
  4. James M. Bardeen, B. Carter,  and S. W. Hawking, “The Four laws of black hole mechanics,” Commun. Math. Phys. 31, 161–170 (1973).
  5. S. W. Hawking, “Black holes and thermodynamics,” Phys. Rev. D 13, 191–197 (1976).
  6. Robert M. Wald, “Black hole entropy is the Noether charge,” Phys. Rev. D 48, R3427–R3431 (1993), arXiv:gr-qc/9307038 .
  7. Vivek Iyer and Robert M. Wald, “Some properties of the noether charge and a proposal for dynamical black hole entropy,” Phys. Rev. D 50, 846–864 (1994).
  8. Ted Jacobson, Gungwon Kang,  and Robert C. Myers, “On black hole entropy,” Phys. Rev. D 49, 6587–6598 (1994).
  9. V. P. Frolov and I. D. Novikov, eds., Black hole physics: Basic concepts and new developments (1998).
  10. Suvankar Dutta and Rajesh Gopakumar, “Euclidean and noetherian entropies in ads space,” Phys. Rev. D 74, 044007 (2006).
  11. Friedrich Kottler, “Über die physikalischen Grundlagen der Einsteinschen Gravitationstheorie,” Annalen der Physik 361, 401–462 (1918).
  12. S. W. Hawking and Don N. Page, “Thermodynamics of Black Holes in anti-De Sitter Space,” Commun. Math. Phys. 87, 577 (1983).
  13. Juan Martin Maldacena, “The Large N limit of superconformal field theories and supergravity,” Adv. Theor. Math. Phys. 2, 231–252 (1998), arXiv:hep-th/9711200 .
  14. Edward Witten, “Anti-de Sitter space and holography,” Adv. Theor. Math. Phys. 2, 253–291 (1998a), arXiv:hep-th/9802150 .
  15. Edward Witten, “Anti-de Sitter space, thermal phase transition, and confinement in gauge theories,” Adv. Theor. Math. Phys. 2, 505–532 (1998b), arXiv:hep-th/9803131 .
  16. Ofer Aharony, Steven S. Gubser, Juan Martin Maldacena, Hirosi Ooguri,  and Yaron Oz, “Large N field theories, string theory and gravity,” Phys. Rept. 323, 183–386 (2000), arXiv:hep-th/9905111 .
  17. David Kastor, Sourya Ray,  and Jennie Traschen, “Enthalpy and the Mechanics of AdS Black Holes,” Class. Quant. Grav. 26, 195011 (2009), arXiv:0904.2765 [hep-th] .
  18. Brian P. Dolan, “Where Is the PdV in the First Law of Black Hole Thermodynamics?”  (INTECH, 2012) arXiv:1209.1272 [gr-qc] .
  19. David Kubiznak and Robert B. Mann, “P-V criticality of charged AdS black holes,” JHEP 07, 033 (2012), arXiv:1205.0559 [hep-th] .
  20. David Kubiznak, Robert B. Mann,  and Mae Teo, “Black hole chemistry: thermodynamics with Lambda,” Class. Quant. Grav. 34, 063001 (2017), arXiv:1608.06147 [hep-th] .
  21. Peng Wang, Houwen Wu, Haitang Yang,  and Feiyu Yao, “Extended Phase Space Thermodynamics for Black Holes in a Cavity,” JHEP 09, 154 (2020), arXiv:2006.14349 [gr-qc] .
  22. Clifford V. Johnson, “Holographic Heat Engines,” Class. Quant. Grav. 31, 205002 (2014), arXiv:1404.5982 [hep-th] .
  23. Brian P. Dolan, “Bose condensation and branes,” JHEP 10, 179 (2014a), arXiv:1406.7267 [hep-th] .
  24. Brian P Dolan, “Pressure and compressibility of conformal field theories from the AdS/CFT correspondence,” Entropy 18, 169 (2016), arXiv:1603.06279 [hep-th] .
  25. Viktor G. Czinner and Hideo Iguchi, “Rényi Entropy and the Thermodynamic Stability of Black Holes,” Phys. Lett. B 752, 306–310 (2016), arXiv:1511.06963 [gr-qc] .
  26. Viktor G. Czinner and Hideo Iguchi, “Thermodynamics, stability and Hawking–Page transition of Kerr black holes from Rényi statistics,” Eur. Phys. J. C 77, 892 (2017), arXiv:1702.05341 [gr-qc] .
  27. Chatchai Promsiri, Ekapong Hirunsirisawat,  and Watchara Liewrian, “Thermodynamics and Van der Waals phase transition of charged black holes in flat spacetime via Rényi statistics,” Phys. Rev. D 102, 064014 (2020), arXiv:2003.12986 [hep-th] .
  28. Chatchai Promsiri, Ekapong Hirunsirisawat,  and Watchara Liewrian, “Solid-liquid phase transition and heat engine in an asymptotically flat schwarzschild black hole via the rényi extended phase space approach,” Phys. Rev. D 104, 064004 (2021).
  29. Chatchai Promsiri, Ekapong Hirunsirisawat,  and Ratchaphat Nakarachinda, “Emergent phase, thermodynamic geometry, and criticality of charged black holes from Rényi statistics,” Phys. Rev. D 105, 124049 (2022), arXiv:2204.13023 [hep-th] .
  30. Lunchakorn Tannukij, Pitayuth Wongjun, Ekapong Hirunsirisawat, Tanapat Deesuwan,  and Chatchai Promsiri, “Thermodynamics and phase transition of spherically symmetric black hole in de Sitter space from Rényi statistics,” Eur. Phys. J. Plus 135, 500 (2020), arXiv:2002.00377 [gr-qc] .
  31. Daris Samart and Phongpichit Channuie, “AdS to dS phase transition mediated by thermalon in Einstein-Gauss-Bonnet gravity from Rényi statistics,”   (2020), arXiv:2012.14828 [hep-th] .
  32. Ratchaphat Nakarachinda, Ekapong Hirunsirisawat, Lunchakorn Tannukij,  and Pitayuth Wongjun, “Effective thermodynamical system of Schwarzschild–de Sitter black holes from Rényi statistics,” Phys. Rev. D 104, 064003 (2021), arXiv:2106.02838 [gr-qc] .
  33. Han-Ying Guo, Chao-Guang Huang, Zhan Xu,  and Bin Zhou, “On Beltrami model of de Sitter space-time,” Mod. Phys. Lett. A 19, 1701–1710 (2004), arXiv:hep-th/0311156 .
  34. Mu-Lin Yan, Neng-Chao Xiao, Wei Huang,  and Si Li, “Hamiltonian formalism of the de-Sitter invariant special relativity,” Commun. Theor. Phys. 48, 27–36 (2007), arXiv:hep-th/0512319 .
  35. Han-Ying Guo, “Special Relativity and Theory of Gravity via Maximum Symmetry and Localization: In Honor of the 80th Birthday of Professor Qikeng Lu,” Sci. China A 51, 568–603 (2008), arXiv:0707.3855 [gr-qc] .
  36. Sergey N. Manida, “Generalized Relativistic Kinematics,” Theor. Math. Phys. 169, 1643–1655 (2011), arXiv:1111.3676 [gr-qc] .
  37. Mu-Lin Yan, De Sitter Invariant Special Relativity (2015).
  38. T. Angsachon, M. E. Chaikovskii,  and S. N. Manida, “Conservation laws for classical particles in Anti-de Sitter-Beltrami space,” Theor. Math. Phys. 176, 845–852 (2013), arXiv:1812.01381 [gr-qc] .
  39. Han-Ying Guo, Chao-Guang Huang,  and Bin Zhou, “Temperature at horizon in de Sitter spacetime,” Europhys. Lett. 72, 1045–1051 (2005), arXiv:hep-th/0404010 .
  40. T. Angsachon and S. N. Manida, “Schwarzschild Solution in R-spacetime,”   (2013), arXiv:1301.4198 [gr-qc] .
  41. Li-Feng Sun, Mu-Lin Yan, Ya Deng, Wei Huang,  and Sen Hu, “Schwarzschild-de Sitter Metric and Inertial Beltrami Coordinates,” Mod. Phys. Lett. A 28, 1350114 (2013), arXiv:1308.5222 [gr-qc] .
  42. Hang Liu and Xin-he Meng, “Thermodynamics of Schwarzschild–Beltrami–de Sitter black hole,” Mod. Phys. Lett. A 32, 1750146 (2017), arXiv:1611.03604 [gr-qc] .
  43. Miho Urano, Akira Tomimatsu,  and Hiromi Saida, “Mechanical First Law of Black Hole Spacetimes with Cosmological Constant and Its Application to Schwarzschild-de Sitter Spacetime,” Class. Quant. Grav. 26, 105010 (2009), arXiv:0903.4230 [gr-qc] .
  44. Brian P. Dolan, “Vacuum energy and the latent heat of AdS-Kerr black holes,” Phys. Rev. D 90, 084002 (2014b), arXiv:1407.4037 [gr-qc] .
  45. Pallab Basu, Chethan Krishnan,  and P. N. Bala Subramanian, “Hairy Black Holes in a Box,” JHEP 11, 041 (2016), arXiv:1609.01208 [hep-th] .
  46. Ran Li and Jin Wang, “Thermodynamics and kinetics of hawking-page phase transition,” Phys. Rev. D 102, 024085 (2020).
  47. Rui André and José P. S. Lemos, “Thermodynamics of five-dimensional schwarzschild black holes in the canonical ensemble,” Phys. Rev. D 102, 024006 (2020).

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 1 like.