Papers
Topics
Authors
Recent
2000 character limit reached

Quantum support vector machines for aerodynamic classification (2208.07138v1)

Published 15 Aug 2022 in quant-ph and physics.flu-dyn

Abstract: Aerodynamics plays an important role in aviation industry and aircraft design. Detecting and minimizing the phenomenon of flow separation from scattered pressure data on airfoil is critical for ensuring stable and efficient aviation. However, since it is challenging to understand the mechanics of flow field separation, the aerodynamic parameters are emphasized for the identification and control of flow separation. It has been investigated extensively using traditional algorithms and machine learning methods such as the support vector machine (SVM) models. Recently, a growing interest in quantum computing and its applications among wide research communities sheds light upon the use of quantum techniques to solve aerodynamic problems. In this paper, we apply qSVM, a quantum SVM algorithm based on the quantum annealing model, to identify whether there is flow separation, with their performance in comparison to the widely-used classical SVM. We show that our approach outperforms the classical SVM with an 11.1% increase of the accuracy, from 0.818 to 0.909, for this binary classification task. We further develop multi-class qSVMs based on one-against-all algorithm. We apply it to classify multiple types of the attack angles to the wings, where the advantage over the classical multi-class counterpart is maintained with an accuracy increased from 0.67 to 0.79, by 17.9%. Our work demonstrates a useful quantum technique for classifying flow separation scenarios, and may promote rich investigations for quantum computing applications in fluid dynamics.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.