Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Conformal dynamics at infinity for groups with contracting elements (2208.04861v5)

Published 9 Aug 2022 in math.GR, math.DS, math.GT, and math.MG

Abstract: This paper develops a theory of conformal density at infinity for groups with contracting elements. We start by introducing a class of convergence boundary encompassing many known hyperbolic-like boundaries, on which a detailed study of conical points and Myrberg points is carried out. The basic theory of conformal density is then established on the convergence boundary, including the Sullivan shadow lemma and a Hopf--Tsuji--Sullivan dichotomy. This gives a unification of the theory of conformal density on the Gromov and Floyd boundary for (relatively) hyperbolic groups, the visual boundary for rank-1 CAT(0) groups, and Thurston boundary for mapping class groups. Besides that, the conformal density on the horofunction boundary provides a new important example of our general theory. Applications include the identification of Poisson boundary of random walks, the co-growth problem of divergent groups, measure theoretical results for CAT(0) groups and mapping class groups.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube