Papers
Topics
Authors
Recent
Search
2000 character limit reached

An Effective Field Theory for Large Oscillons

Published 8 Aug 2022 in hep-th, astro-ph.CO, and hep-ph | (2208.04334v2)

Abstract: We consider oscillons - localized, quasiperiodic, and extremely long-living classical solutions in models with real scalar fields. We develop their effective description in the limit of large size at finite field strength. Namely, we note that nonlinear long-range field configurations can be described by an effective complex field $\psi(t, \boldsymbol{x})$ which is related to the original fields by a canonical transformation. The action for $\psi$ has the form of a systematic gradient expansion. At every order of the expansion, such an effective theory has a global U(1) symmetry and hence a family of stationary nontopological solitons - oscillons. The decay of the latter objects is a nonperturbative process from the viewpoint of the effective theory. Our approach gives an intuitive understanding of oscillons in full nonlinearity and explains their longevity. Importantly, it also provides reliable selection criteria for models with long-lived oscillons. This technique is more precise in the nonrelativistic limit, in the notable cases of nonlinear, extremely long-lived, and large objects, and also in lower spatial dimensions. We test the effective theory by performing explicit numerical simulations of a $(d+1)$-dimensional scalar field with a plateau potential.

Citations (6)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.