Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 421 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Improving performance in multi-objective decision-making in Bottles environments with soft maximin approaches (2208.04273v2)

Published 8 Aug 2022 in cs.AI

Abstract: Balancing multiple competing and conflicting objectives is an essential task for any artificial intelligence tasked with satisfying human values or preferences. Conflict arises both from misalignment between individuals with competing values, but also between conflicting value systems held by a single human. Starting with principle of loss-aversion, we designed a set of soft maximin function approaches to multi-objective decision-making. Bench-marking these functions in a set of previously-developed environments, we found that one new approach in particular, 'split-function exp-log loss aversion' (SFELLA), learns faster than the state of the art thresholded alignment objective method (Vamplew et al, 2021) on three of four tasks it was tested on, and achieved the same optimal performance after learning. SFELLA also showed relative robustness improvements against changes in objective scale, which may highlight an advantage dealing with distribution shifts in the environment dynamics. Due to publishing rules, further work could not be presented in the preprint, but in the final published version, we will further compare SFELLA to the multi-objective reward exponentials (MORE) approach (Rolf, 2020), demonstrating that SFELLA performs similarly to MORE in a simple previously-described foraging task, but in a modified foraging environment with a new resource that was not depleted as the agent worked, SFELLA collected more of the new resource with very little cost incurred in terms of the old resource. Overall, we found SFELLA useful for avoiding problems that sometimes occur with a thresholded approach, and more reward-responsive than MORE while retaining its conservative, loss-averse incentive structure.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube