Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Generalized Estimators, Slope, Efficiency, and Fisher Information Bounds (2208.03630v2)

Published 7 Aug 2022 in math.ST and stat.TH

Abstract: Point estimators may not exist, need not be unique, and their distributions are not parameter invariant. Generalized estimators provide distributions that are parameter invariant, unique, and exist when point estimates do not. Comparing point estimators using variance is less useful when estimators are biased. A squared slope $\Lambda$ is defined that can be used to compare both point and generalized estimators and is unaffected by bias. Fisher information $I$ and variance are fundamentally different quantities: the latter is defined at a distribution that need not belong to a family, while the former cannot be defined without a family of distributions, $M$. Fisher information and $\Lambda$ are similar quantities as both are defined on the tangent bundle $T!M$ and $I$ provides an upper bound, $\Lambda\le I$, that holds for all sample sizes -- asymptotics are not required. Comparing estimators using $\Lambda$ rather than variance supports Fisher's claim that $I$ provides a bound even in small samples. $\Lambda$-efficiency is defined that extends the efficiency of unbiased estimators based on variance. While defined by the slope, $\Lambda$-efficiency is simply $\rho{2}$, the square of the correlation between estimator and score function.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.