Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 78 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 107 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Joint Attention-Driven Domain Fusion and Noise-Tolerant Learning for Multi-Source Domain Adaptation (2208.02947v2)

Published 5 Aug 2022 in cs.CV

Abstract: As a study on the efficient usage of data, Multi-source Unsupervised Domain Adaptation transfers knowledge from multiple source domains with labeled data to an unlabeled target domain. However, the distribution discrepancy between different domains and the noisy pseudo-labels in the target domain both lead to performance bottlenecks of the Multi-source Unsupervised Domain Adaptation methods. In light of this, we propose an approach that integrates Attention-driven Domain fusion and Noise-Tolerant learning (ADNT) to address the two issues mentioned above. Firstly, we establish a contrary attention structure to perform message passing between features and to induce domain movement. Through this approach, the discriminability of the features can also be significantly improved while the domain discrepancy is reduced. Secondly, based on the characteristics of the unsupervised domain adaptation training, we design an Adaptive Reverse Cross Entropy loss, which can directly impose constraints on the generation of pseudo-labels. Finally, combining these two approaches, experimental results on several benchmarks further validate the effectiveness of our proposed ADNT and demonstrate superior performance over the state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube