Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Embedding and trajectories of temporal networks (2208.02869v3)

Published 4 Aug 2022 in physics.soc-ph

Abstract: Temporal network data are increasingly available in various domains, and often represent highly complex systems with intricate structural and temporal evolutions. Due to the difficulty of processing such complex data, it may be useful to coarse grain temporal network data into a numeric trajectory embedded in a low-dimensional space. We refer to such a procedure as temporal network embedding, which is distinct from procedures that aim at embedding individual nodes. Temporal network embedding is a challenging task because we often have access only to discrete time-stamped events between node pairs, and, in general, the events occur with irregular intervals, making the construction of the network at a given time a nontrivial question already. We propose a method to generate trajectories of temporal networks embedded in a low-dimensional space given a sequence of time-stamped events as input. We realize this goal by combining the landmark multidimensional scaling, which is an out-of-sample extension of the well-known multidimensional scaling method, and the framework of tie-decay temporal networks. This combination enables us to obtain a continuous-time trajectory describing the evolution of temporal networks. We then study mathematical properties of the proposed temporal network embedding framework. Finally, we showcase the method with empirical data of social contacts to find temporal organization of contact events and loss of them over a single day and across different days.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube