Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Estimating the Spectral Density at Frequencies Near Zero (2208.02300v1)

Published 3 Aug 2022 in stat.ME

Abstract: Estimating the spectral density function $f(w)$ for some $w\in [-\pi, \pi]$ has been traditionally performed by kernel smoothing the periodogram and related techniques. Kernel smoothing is tantamount to local averaging, i.e., approximating $f(w)$ by a constant over a window of small width. Although $f(w)$ is uniformly continuous and periodic with period $2\pi$, in this paper we recognize the fact that $w=0$ effectively acts as a boundary point in the underlying kernel smoothing problem, and the same is true for $w=\pm \pi$. It is well-known that local averaging may be suboptimal in kernel regression at (or near) a boundary point. As an alternative, we propose a local polynomial regression of the periodogram or log-periodogram when $w$ is at (or near) the points 0 or $\pm \pi$. The case $w=0$ is of particular importance since $f(0)$ is the large-sample variance of the sample mean; hence, estimating $f(0)$ is crucial in order to conduct any sort of inference on the mean.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.