2000 character limit reached
Contractivity of Bellman Operator in Risk Averse Dynamic Programming with Infinite Horizon (2208.01990v1)
Published 3 Aug 2022 in math.OC and stat.AP
Abstract: The paper deals with a risk averse dynamic programming problem with infinite horizon. First, the required assumptions are formulated to have the problem well defined. Then the Bellman equation is derived, which may be also seen as a standalone reinforcement learning problem. The fact that the Bellman operator is contraction is proved, guaranteeing convergence of various solution algorithms used for dynamic programming as well as reinforcement learning problems, which we demonstrate on the value iteration algorithm.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.