Papers
Topics
Authors
Recent
2000 character limit reached

Simplex Clustering via sBeta with Applications to Online Adjustment of Black-Box Predictions (2208.00287v4)

Published 30 Jul 2022 in cs.CV, cs.AI, and cs.LG

Abstract: We explore clustering the softmax predictions of deep neural networks and introduce a novel probabilistic clustering method, referred to as k-sBetas. In the general context of clustering discrete distributions, the existing methods focused on exploring distortion measures tailored to simplex data, such as the KL divergence, as alternatives to the standard Euclidean distance. We provide a general maximum a posteriori (MAP) perspective of clustering distributions, emphasizing that the statistical models underlying the existing distortion-based methods may not be descriptive enough. Instead, we optimize a mixed-variable objective measuring data conformity within each cluster to the introduced sBeta density function, whose parameters are constrained and estimated jointly with binary assignment variables. Our versatile formulation approximates various parametric densities for modeling simplex data and enables the control of the cluster-balance bias. This yields highly competitive performances for the unsupervised adjustment of black-box model predictions in various scenarios. Our code and comparisons with the existing simplex-clustering approaches and our introduced softmax-prediction benchmarks are publicly available: https://github.com/fchiaroni/Clustering_Softmax_Predictions.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.